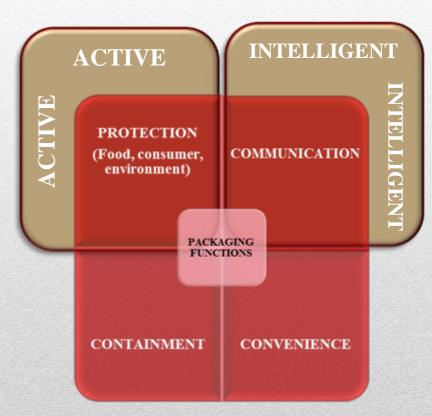
I MATERIALI ATTIVI ED INTELLIGENTI DESTINATI al CONTATTO con ALIMENTI

Imballaggi Carta e Cartone: Nuove soluzioni sostenibili 30 Gennaio 2013, Milano

Sara Limbo Università degli Studi di Milano STATES OF STATES

Department of Food, Environmental and Nutritional Sciences



Historically, **PRIMARY** packaging materials have been considered as "**PASSIVE**": they function only as an inert barrier to protect food against gas, moisture etc.

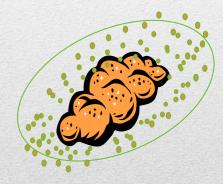
During the past 3 decades, the idea of **foodpackaging INTERACTIONS** has been exploited.

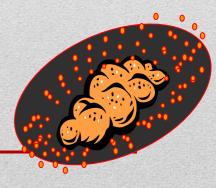
The new paradigm:

The protection functions from **PASSIVE TO ACTIVE & INTELLIGENT**

From traditional to active & intelligent packaging

Yam et al., 2005. J.Food Sci, 70 (1) R1-R10


Active packaging definition

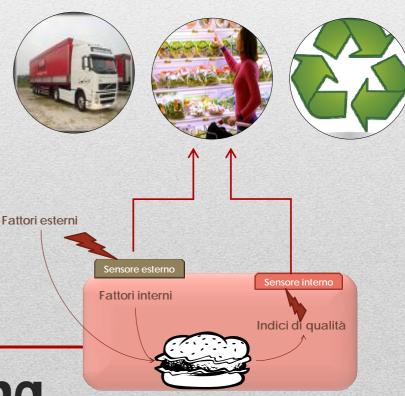

'active materials and articles' means materials and articles that are intended to extend the shelf-life or to maintain or improve the condition of packaged food

they are designed to **deliberately incorporate** components that **would release or absorb substances into or from the packaged food or the environment surrounding the food**

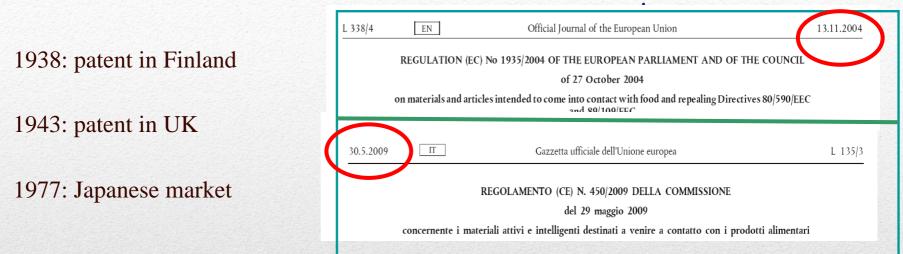
(EU Reg. 450/2009)

From traditional to active packaging

Intelligent packaging definition



Intelligent materials and articles' means materials and articles which **monitor the condition of packaged food** or the **environment surrounding** the food (EU Reg. 450/2009)


Intelligent packaging is an emerging technology that uses the **communication function** of the package to **facilitate decision making to achieve the benefits of enhanced** food quality and safety

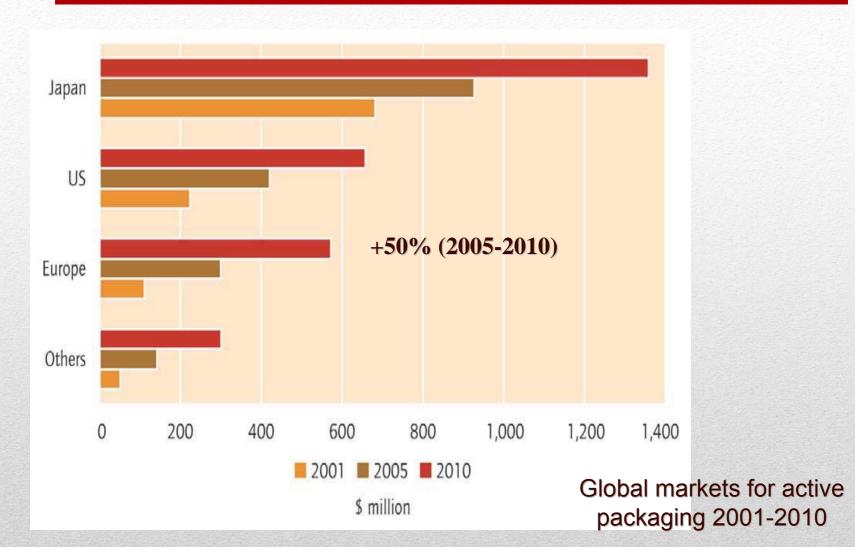
A package is "intelligent" if it has the ability to **track the product**, **sense the environment inside or outside** the package, and **communicate** with human. For example, an intelligent package is one that can monitor the quality/safety condition of a food product and provide early warning to the consumer or food manufacturer.

From traditional to intelligent packaging

Active packaging is not a recent issue:

BUT

only recently it found a placement on European market thanks to the legislative framework


2004: EU Framework Regulation 1935 for materials and articles in contact with foods

2009: EU Regulation 450 for active and intelligent materials

From traditional to active &

intelligent packaging

FOCUS on ACTIVE PACKAGING

From traditional to active packaging

(Source: Pira International Ltd.)

Substances able to induce food modification during shelf life

•Oxygen: rancidity, color changes, moulds, aerobic bacteria spoilage nutrient loss, insect infestations...

•Water: moulding, aerobic respiration, texture changes...

•Ethylen: vegetables ripening, senescence...

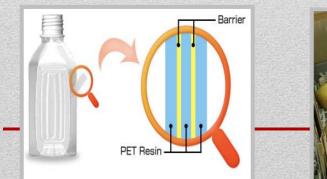
•Off flavours: sensorial changes, oxidation propagation...

- •Trimethylammine: proteic degradation, sensorial changes
- •Hexanal: lipid degradation, sensorial changes...

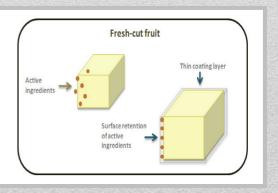
Main principles and applications

•

Main principles and applications

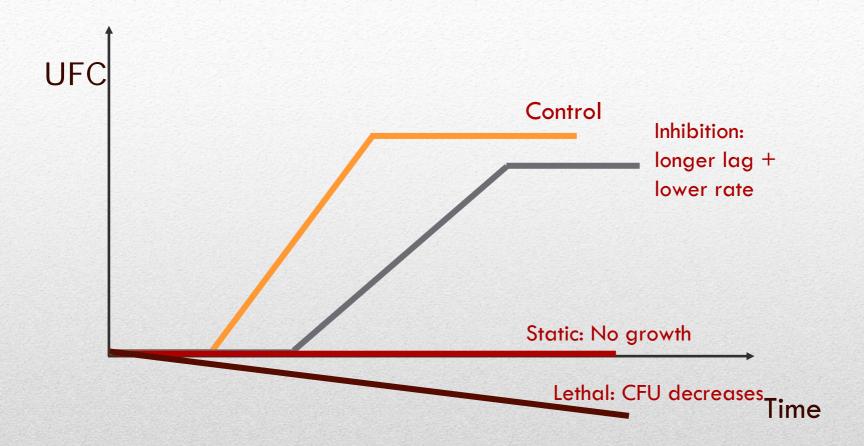

Without Sc

With Scav


FUNCTION	ACTION	APPLICATION Bakery product, meat, processed meat, fish, beverage			
Oxygen absorbers/scavengers	-oxidative reactions; - bacteria growth;				
CO ₂ absorbers/emitters	- bacteria growth; + shelf life; coadiuvant in MAP	Meat, fish, beer, cheese			
Water absorbers	-bacteria growth; + aesthetic appearance (-exudates)	Meat, fish			
Moisture regulators	-bacteria growth; +texture maintainance;	Meat, fish. cheese, bakery product, vegetables, fruit			
Onderste hildly kedre Onderste hildly kedre Onderste hildly kedre		Po Coo			

Main principles and applications

FUNCTION	ACTION	APPLICATION		
Ethylene absorbers	-ethylene; +ripening control;	Fruit, vegetables		
Ethanol emitters	-microbial growth	Bakery products		
Aroma emitters	+sensorial quality	Bakery products; processed meats		
Antimicrobials	-microbial growth; +safety control	Fish, meat, bakery products (high aw), minimally processed vegetables		



FOCUS on ANTIMICROBIAL ACTIVE PACKAGING

Antimicrobial packaging is a system that can kill or inhibit the growth of microorganisms and thus extend the shelf life of perishable products and enhance the safety of packaged products

(Han, 2000)

Antimicrobials: definition

Antimicrobials: different mechanisms of action

Class

Organic acids

Polymers

Organic Gas

Metals

Fungicid

Bacteriocins

Enzymes

Chelating agents

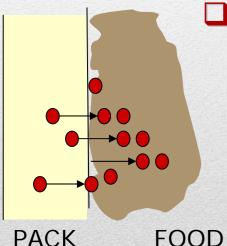
Spices (extracts)

Essential oils/oleoresins

Examples

Propionic acid, benzoic ac., sorbic ac., lactic ac... Chitosan SO_2, ClO_2 Silver Benomyl, imazalil Nisin, pediocin, etc Lysozyme, glucose oxidase EDTA Horseradish (allileisocianato), cinnamon

Carvacrol, cinnamaldheyde, eugenol..

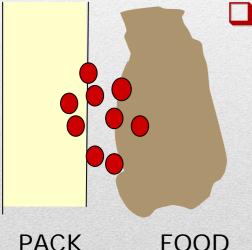

Antimicrobials: different active

substances

- □ **Sachets** directly inserted into the package
- **Pads** directly inserted into the package
- Polymers naturally antimicrobials (ex.chitosan) or polymers with induced antimicrobial effects (ex. Irradiated polyammine)
- □ Incorporation via **Blending/Extrusion**
- □ Coating, varnishes...
- □ Immobilization via covalent bonds.....

Antimicrobials: different forms

Incorporation methods and transferring/releasing tecniques are critical in designing effective antimicrobial packaging systems.

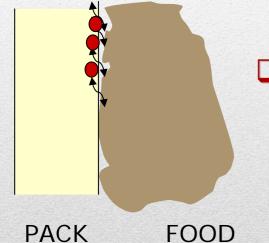

□ Non-volatile migration

The mass transfer of non-volatile ANTIMICROBIALS (AM) is dominated by diffusional migration. The AM is positioned in the packaging materials.and the direct contact with food is required

Therefore, the solubility (or partition coefficient) and diffusion coefficient are very important to maintain the surface concentration above the MIC during the expected shelf life

Antimicrobials: different ways of releasing

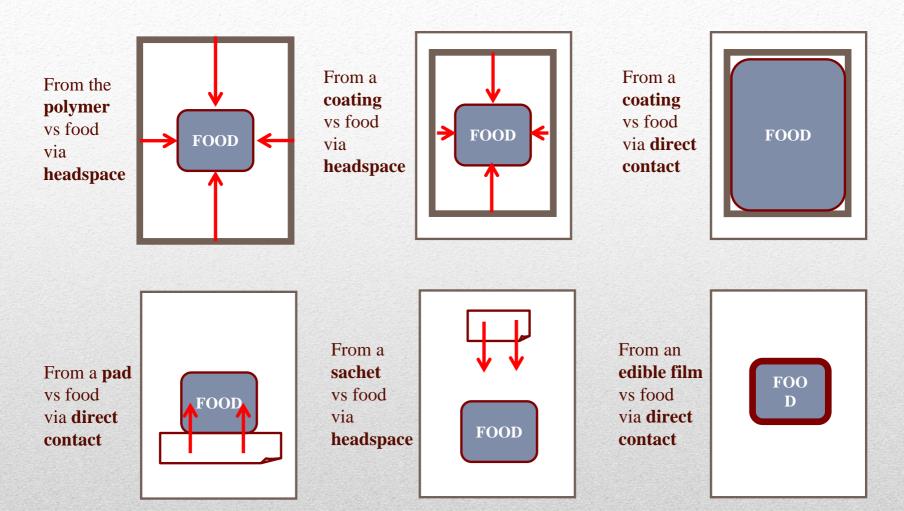
Incorporation methods and transferring/releasing tecniques are critical in designing effective antimicrobial packaging systems.


□ Volatile migration

- In this case, the AM is released from the package to the headspace. The volatile AM's concentration in the headspace has to be balanced.
- ☐ The release rate of the AM from the packaging is highly dependent on the volatility, which relates to the chemical interactions between the AM and the packaging material
- □ The volatility can be controlled by using microencapsulation, oils etc.
- The absorption rate into the food is dependent on the food composition (ex.lipid content)

Antimicrobials: different ways

of releasing


Incorporation methods and transferring/releasing tecniques are critical in designing effective antimicrobial packaging systems.

□ Non-migration and absorption

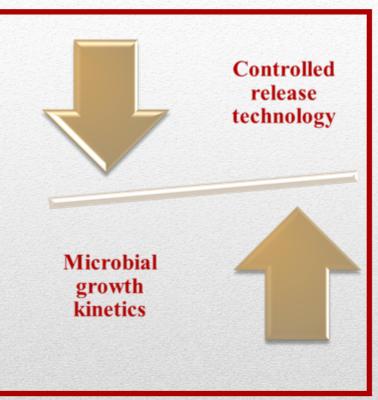
- The non-migration system uses non-migratory antimicrobial polymers, where the AM agent does not migrate out of the polymer due to its covalent attachment to the polymer backbone (grafting, immobilization through cross-linking)
- □ The activity is limited to the contact surface only

Antimicrobials: different ways of releasing

Antimicrobials: different ways of releasing

Controlled release packaging (CRP) is a new generation of packaging materials that can release active compounds at **different controlled rates** suitable for en**hancing the quality and safety of a wide range of foods** during extended storage. The basic concept is to use the package as a **delivery system** for active compounds, such as antimicrobials, antioxidants, enzymes, flavours and nutraceuticals

LaCoste. Packag. Technol. Sci. 2005; 18: 77-87

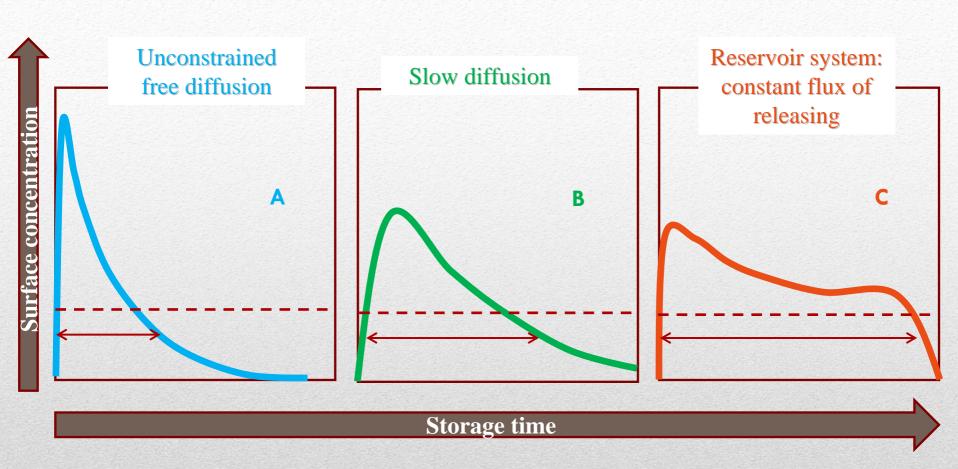

Antimicrobials: controlled release

What does an AM packaging system require?

A) the mass transfer rate of an AM agent is FASTER than the growth rate of microrganisms

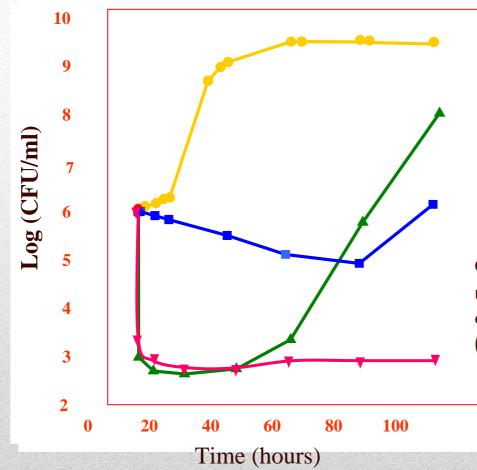
the AM will be diluted to less than the effective critical concentration; the packaging system will deplete its AM activity

release



B) the mass transfer rate of an AM agent is too SLOW

the microorganisms will growth instantly, before the AM is released


Antimicrobials: controlled

Han, 2005. Antimicrobial packaging system

Antimicrobials: controlled

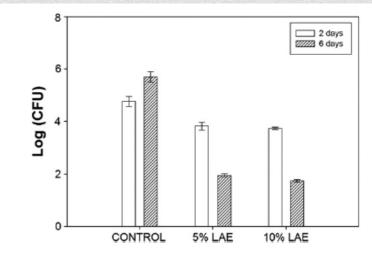
release

No nisin

- ▲ Instant addition of 200 IU/ml
- Controlled released 200 IU/ml
- Combination of two delivery methods

Combination between an istantaneous release and a controlled release of nisin: effects on *Listeria monocytogenes* (Zhang, 2001)

Antimicrobials: controlled


release

Efficacy of LAE films against *L. monocytogenes* and *S. enterica* in a milk infant formula

Antimicrobial effectiveness against *L. monocytogenes*, *E. coli*, and *S. enterica*. EVOH-44 films with 0.25%, 1%, 5%, and 10% LAE at 37 °C expressed as logarithm of colony forming units (Log(CFU)) and log reduction value (LRV).

	L. monocytogenes		E. coli		S. enterica	
	Log(CFU)	LRV	Log(CFU)	LRV	Log(CFU)	LRV
Control	8.43 ± 0.47		8.56 ± 0.28		8.87 ± 0.14	
10% LAE			Total inhibiti	on	Total inhibiti	on
5% LAE			Total inhibition		Total inhibition	
1% LAE	4.21 ± 0.14	4.22	5.53 ± 0.62	3.03	5.49 ± 0.53	3.38
0.25% LAE	6.99 ± 0.22	1.44	6.16 ± 0.48	2.40	6.41 ± 0.24	2.46

LAE (N^α-Lauroyl-*L*-arginine ethyl ester monohydrochloride) -Broad spectrum of antimicrobial activity -GRAS (Generally Recognized as Safe) -Food preservative (limit 200 ppm) by FDA

V. Muriel-Galet et al. International Journal of Food Microbiology 157 (2012) 239–244

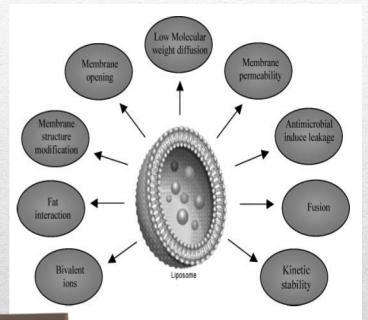
Fig. 6. Growth reduction of *S. enterica* inoculated in an infant formula at 2nd and 6th days of storage caused by EVOH-29 films (control, 5% LAE and 10% LAE).

Nafispack

(Natural Antimicrobials for Innovative and Safe Packaging)

Innovative and safe packaging systems to increase fresh product shelf life by using two novel packaging technologies: **antimicrobial active** packaging and **intelligent packaging** for fresh fish, chicken, and minimally processed vegetables (MPVs).

Development of a safety assessment methodology that includes the **chemical characterization** and **toxicological profile of intentionally and non-intentionally added substances** present in these new packaging materials and that might migrate to the foodstuffs.

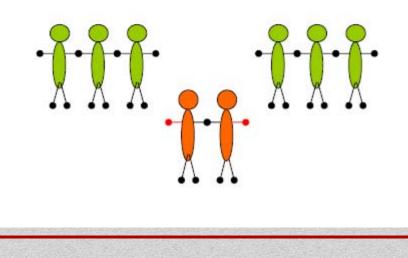

http://www.nafispack.com/

Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology Imran et al. (2010)

The technology of nanoparticles in the near future involves the incorporation of nano–active agents into packaging materials to increase and modulate some FUNCTIONAL properties of packaging materials

> GAS BARRIER HEAT/LIGHT RESISTANCE MECHANICAL STRENGHT

.



Micro- and nanoencapsulation of the active substances either in packaging and/or within food will make available alternative, more efficient and, in some cases, unique merits to offer food with an improved impact on human health

Lopez-Rubio et al. (2006)

A last consideration:

Whether absorbers, releasers or even grafted, active packaging systems may release chemicals into food. Hence the need of a risk assessment requested by the regulation. The risk assessment approach is documented in EFSA's guidelines.

The degradation products of the polymer can migrate into food

Source: Food safety linked to chemical contamination through packaging materials: EFSA's guidelines for active and intelligent packaging (Feigenbaum, Spyropoulos, Joly, 2008. CCM Conference, Bonn)

Grazie per l'attenzione

Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology EMERGING CONCEPT OF NANOTECHNOLOGY BLEND WITH 3-BIOS

Imran et al. (2010)

The next technological revolution in the pasture of food science and nutrition would be 3-BIOS blend with nanotechnology

Bioactive, Biodegradable, Bio-nanocomposite

It is likely to be the smartest development yet to be seen in modern food packaging innovations.